Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 3(1): 98, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726481

RESUMO

An important factor dictating coral fitness is the quality of bacteria associated with corals and coral reefs. One way that bacteria benefit corals is by stimulating the larval to juvenile life cycle transition of settlement and metamorphosis. Tetrabromopyrrole (TBP) is a small molecule produced by bacteria that stimulates metamorphosis with and without attachment in a range of coral species. A standing debate remains, however, about whether TBP biosynthesis from live Pseudoalteromonas bacteria is the primary stimulant of coral metamorphosis. In this study, we create a Pseudoalteromonas sp. PS5 mutant lacking the TBP brominase gene, bmp2. Using this mutant, we confirm that the bmp2 gene is critical for TBP biosynthesis in Pseudoalteromonas sp. PS5. Mutation of this gene ablates the bacterium's ability in live cultures to stimulate the metamorphosis of the stony coral Porites astreoides. We further demonstrate that expression of TBP biosynthesis genes is strongest in stationary and biofilm modes of growth, where Pseudoalteromonas sp. PS5 might exist within surface-attached biofilms on the sea floor. Finally, we create a modular transposon plasmid for genomic integration and fluorescent labeling of Pseudoalteromonas sp. PS5 cells. Our results functionally link a TBP biosynthesis gene from live bacteria to a morphogenic effect in corals. The genetic techniques established here provide new tools to explore coral-bacteria interactions and could help to inform future decisions about utilizing marine bacteria or their products for coral restoration.

2.
mBio ; 14(4): e0150223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37530556

RESUMO

A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacterium Pseudoalteromonas luteoviolacea, which stimulates the metamorphosis of the model tubeworm, Hydroides elegans. Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for testing the genetic tractability of marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts resulted in the successful conjugation of 12 marine strains from the Alphaproteobacteria and Gammaproteobacteria classes. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with potential implications for environmental restoration and biotechnology. IMPORTANCE Marine Proteobacteria are attractive targets for genetic engineering due to their ability to produce a diversity of bioactive metabolites and their involvement in host-microbe symbioses. Modular cloning toolkits have become a standard for engineering model microbes, such as Escherichia coli, because they enable innumerable mix-and-match DNA assembly and engineering options. However, such modular tools have not yet been applied to most marine bacterial species. In this work, we adapt a modular plasmid toolkit for use in a set of 12 marine bacteria from the Gammaproteobacteria and Alphaproteobacteria classes. We demonstrate the utility of this genetic toolkit by engineering a marine Pseudoalteromonas bacterium to study their association with its host animal Hydroides elegans. This work provides a proof of concept that modular genetic tools can be applied to diverse marine bacteria to address basic science questions and for biotechnology innovations.


Assuntos
Biotecnologia , Engenharia Genética , Animais , Plasmídeos/genética , Engenharia Genética/métodos , Técnicas Genéticas , Proteobactérias/genética
3.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214991

RESUMO

An important factor dictating coral fitness is the quality of bacteria associated with corals and coral reefs. One way that bacteria benefit corals is by stimulating the larval to juvenile life cycle transition of settlement and metamorphosis. Tetrabromopyrrole (TBP) is a small molecule produced by bacteria that stimulates metamorphosis in a range of coral species. A standing debate remains, however, about whether TBP biosynthesis from live Pseudoalteromonas bacteria is the primary stimulant of coral metamorphosis. In this study, we create a Pseudoalteromonas sp. PS5 mutant lacking the TBP brominase gene, bmp2 . Using this mutant, we confirm that the bmp2 gene is critical for TBP biosynthesis in Pseudoalteromonas sp. PS5. Mutation of this gene ablates the bacterium's ability in live cultures to stimulate the metamorphosis of the stony coral Porites astreoides . We further demonstrate that expression of TBP biosynthesis genes is strongest in stationary and biofilm modes of growth, where Pseudoalteromonas sp. PS5 might exist within surface-attached biofilms on the sea floor. Finally, we create a modular transposon plasmid for genomic integration and fluorescent labeling of Pseudoalteromonas sp. PS5 cells. Our results functionally link a TBP biosynthesis gene from live bacteria to a morphogenic effect in corals. The genetic techniques established here provide new tools to explore coral-bacteria interactions and could help to inform future decisions about utilizing marine bacteria or their products for restoring degraded coral reefs.

4.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778221

RESUMO

A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacterium Pseudoalteromonas luteoviolacea , which stimulates the metamorphosis of the model tubeworm, Hydroides elegans . Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for rapidly creating and iteratively testing genetic tractability by modifying marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts enabled the successful transformation of twelve marine strains across two Proteobacteria classes, four orders and ten genera. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with broader implications for environmental restoration and biotechnology.

5.
Microb Ecol ; 86(1): 392-407, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35965269

RESUMO

The coral holobiont is comprised of a highly diverse microbial community that provides key services to corals such as protection against pathogens and nutrient cycling. The coral surface mucus layer (SML) microbiome is very sensitive to external changes, as it constitutes the direct interface between the coral host and the environment. Here, we investigate whether the bacterial taxonomic and functional profiles in the coral SML are shaped by the local reef zone and explore their role in coral health and ecosystem functioning. The analysis was conducted using metagenomes and metagenome-assembled genomes (MAGs) associated with the coral Pseudodiploria strigosa and the water column from two naturally distinct reef environments in Bermuda: inner patch reefs exposed to a fluctuating thermal regime and the more stable outer reefs. The microbial community structure in the coral SML varied according to the local environment, both at taxonomic and functional levels. The coral SML microbiome from inner reefs provides more gene functions that are involved in nutrient cycling (e.g., photosynthesis, phosphorus metabolism, sulfur assimilation) and those that are related to higher levels of microbial activity, competition, and stress response. In contrast, the coral SML microbiome from outer reefs contained genes indicative of a carbohydrate-rich mucus composition found in corals exposed to less stressful temperatures and showed high proportions of microbial gene functions that play a potential role in coral disease, such as degradation of lignin-derived compounds and sulfur oxidation. The fluctuating environment in the inner patch reefs of Bermuda could be driving a more beneficial coral SML microbiome, potentially increasing holobiont resilience to environmental changes and disease.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/microbiologia , Ecossistema , Metagenoma , Recifes de Corais , Bactérias/genética , Bactérias/metabolismo , Microbiota/genética , Água do Mar/microbiologia
6.
Dev Biol ; 487: 99-109, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35500661

RESUMO

External environmental cues can have significant impacts on the timing and outcomes of animal development. For the swimming larvae of many marine invertebrates, the presence of specific surface-bound bacteria are important cues that help larvae identify a suitable location on the sea floor for metamorphosis and adult life. While metamorphosis in response to bacteria occurs in diverse animals from across the animal tree of life, we know little about the signal transduction cascades stimulated at the onset of metamorphosis upon their interaction with bacteria. The metamorphosis of a model tubeworm, Hydroides elegans, is triggered by the bacterium Pseudoalteromonas luteoviolacea which produces a stimulatory protein called Mif1. In this work, we define three key nodes in a signaling cascade promoting Hydroides metamorphosis in response to Mif1. Using metabolomic profiling, we find that the stimulation of Hydroides larvae by P. luteoviolacea leads to an increase in diacylglycerol during the initiation of metamorphosis, and that Mif1 is necessary for this upregulation. Genomic and pharmacological examination suggests that diacylglycerol triggers a phosphotransferase signaling cascade involving Protein Kinase C (PKC) and Mitogen-Activated Protein Kinase (MAPK), to induce Hydroides metamorphosis. Additionally, Mif1 activates the expression of two nuclear hormone receptors, HeNHR1 and HeNHR2 in the cerebral ganglia of Hydroides larvae. Our results define a post-translational signal transduction pathway mediating bacteria-stimulated metamorphosis in a model invertebrate animal.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Poliquetos , Animais , Diglicerídeos , Larva , Metamorfose Biológica , Proteína Quinase C , Transdução de Sinais
7.
Microbiol Resour Announc ; 11(6): e0012222, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35532230

RESUMO

Here, we report the draft genome sequence of Nereida sp. strain MMG025, isolated from the surface of giant kelp and assembled and analyzed by undergraduate students participating in a marine microbial genomics course. A genomic comparison suggests that MMG025 is a novel species, providing a resource for future microbiology and biotechnology investigations.

8.
Microbiol Resour Announc ; 10(32): e0040421, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34382833

RESUMO

Here, we report the draft genome sequences of 10 marine Pseudoalteromonas bacteria that were isolated, assembled, and annotated by undergraduate students participating in a marine microbial genomics course. Genomic comparisons suggest that 7 of the 10 strains are novel isolates, providing a resource for future marine microbiology investigations.

9.
Annu Rev Microbiol ; 74: 137-158, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905754

RESUMO

The swimming larvae of many marine animals identify a location on the seafloor to settle and undergo metamorphosis based on the presence of specific surface-bound bacteria. While bacteria-stimulated metamorphosis underpins processes such as the fouling of ship hulls, animal development in aquaculture, and the recruitment of new animals to coral reef ecosystems, little is known about the mechanisms governing this microbe-animal interaction. Here we review what is known and what we hope to learn about how bacteria and the factors they produce stimulate animal metamorphosis. With a few emerging model systems, including the tubeworm Hydroides elegans, corals, and the hydrozoan Hydractinia, we have begun to identify bacterial cues that stimulate animal metamorphosis and test hypotheses addressing their mechanisms of action. By understanding the mechanisms by which bacteria promote animal metamorphosis, we begin to illustrate how, and explore why, the developmental decision of metamorphosis relies on cues from environmental bacteria.


Assuntos
Bactérias/metabolismo , Interações entre Hospedeiro e Microrganismos , Larva/microbiologia , Metamorfose Biológica , Poliquetos/crescimento & desenvolvimento , Poliquetos/microbiologia , Animais , Antozoários/microbiologia , Organismos Aquáticos/microbiologia , Bactérias/classificação , Bactérias/genética , Recifes de Corais , Ecossistema
10.
Environ Microbiol ; 22(11): 4689-4701, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32840026

RESUMO

Pseudoalteromonas luteoviolacea is a globally distributed marine bacterium that stimulates the metamorphosis of marine animal larvae, an important bacteria-animal interaction that can promote the recruitment of animals to benthic ecosystems. Recently, different P. luteoviolacea isolates have been shown to produce two stimulatory factors that can induce tubeworm and coral metamorphosis; Metamorphosis-Associated Contractile structures (MACs) and tetrabromopyrrole (TBP) respectively. However, it remains unclear what proportion of P. luteoviolacea isolates possess the genes encoding MACs, and what phenotypic effect MACs and TBP have on other larval species. Here, we show that 9 of 19 sequenced P. luteoviolacea genomes genetically encode both MACs and TBP. While P. luteoviolacea biofilms producing MACs stimulate the metamorphosis of the tubeworm Hydroides elegans, TBP biosynthesis genes had no effect under the conditions tested. Although MACs are lethal to larvae of the cnidarian Hydractinia symbiologicarpus, P. luteoviolacea mutants unable to produce MACs are capable of stimulating metamorphosis. Our findings reveal a hidden complexity of interactions between a single bacterial species, the factors it produces and two species of larvae belonging to different phyla.


Assuntos
Proteínas de Bactérias/metabolismo , Metamorfose Biológica , Pseudoalteromonas/fisiologia , Animais , Proteínas de Bactérias/genética , Biofilmes , Genoma Bacteriano/genética , Hidrozoários/crescimento & desenvolvimento , Hidrozoários/microbiologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Mutação , Poliquetos/crescimento & desenvolvimento , Poliquetos/microbiologia , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Pirróis/metabolismo , Especificidade da Espécie
11.
mSystems ; 5(4)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723799

RESUMO

Many commensal bacteria antagonize each other or their host by producing syringe-like secretion systems called contractile injection systems (CIS). Members of the Bacteroidales family have been shown to produce only one type of CIS-a contact-dependent type 6 secretion system that mediates bacterium-bacterium interactions. Here, we show that a second distinct cluster of genes from Bacteroidales bacteria from the human microbiome may encode yet-uncharacterized injection systems that we term Bacteroidales injection systems (BIS). We found that BIS genes are present in the gut microbiomes of 99% of individuals from the United States and Europe and that BIS genes are more prevalent in the gut microbiomes of healthy individuals than in those individuals suffering from inflammatory bowel disease. Gene clusters similar to that of the BIS mediate interactions between bacteria and diverse eukaryotes, like amoeba, insects, and tubeworms. Our findings highlight the ubiquity of the BIS gene cluster in the human gut and emphasize the relevance of the gut microbiome to the human host. These results warrant investigations into the structure and function of the BIS and how they might mediate interactions between Bacteroidales bacteria and the human host or microbiome.IMPORTANCE To engage with host cells, diverse pathogenic bacteria produce syringe-like structures called contractile injection systems (CIS). CIS are evolutionarily related to the contractile tails of bacteriophages and are specialized to puncture membranes, often delivering effectors to target cells. Although CIS are key for pathogens to cause disease, paradoxically, similar injection systems have been identified within healthy human microbiome bacteria. Here, we show that gene clusters encoding a predicted CIS, which we term Bacteroidales injection systems (BIS), are present in the microbiomes of nearly all adult humans tested from Western countries. BIS genes are enriched within human gut microbiomes and are expressed both in vitro and in vivo Further, a greater abundance of BIS genes is present within healthy gut microbiomes than in those humans with with inflammatory bowel disease (IBD). Our discovery provides a potentially distinct means by which our microbiome interacts with the human host or its microbiome.

12.
mBio ; 11(2)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127450

RESUMO

Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver.IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.


Assuntos
Antozoários/microbiologia , Microbiota , Modelos Teóricos , Temperatura , Animais , Bermudas , Metagenômica , Interações Microbianas , Muco/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...